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the effect of a single particle on macroscopic quantities is
negligible, the background electromagnetic and flow fieldsThis paper is concerned with the problem of transport in con-

trolled nuclear fusion as it applies to confinement in a tokamak or and their profiles remain fixed. Collisions generate a ran-
stellarator. Numerical experiments validate a mathematical model dom process, and therefore we study the test particles
of Paul R. Garabedian in which the electric potential is determined statistically. Their distribution function satisfies a partial
by quasineutrality because of singular perturbation of the Poisson

differential equation called the test particle drift kineticequation. The Monte Carlo method is used to solve a test particle
equation. The collision operator is modeled in this equa-drift kinetic equation. The collision operator drives the distribution

function in velocity space towards the normal distribution, or Max- tion by a second-order elliptic partial differential operator
wellian, as suggested by the central limit theorem. The detailed acting in the velocity coordinates, as in a Fokker–Planck
structure of the collision operator and the role of conservation of equation. Solutions of the associated diffusion equation in
momentum are investigated. Exponential decay of expected values

velocity space decay to the normal distribution, or Maxwel-allows the computation of the confinement times of both ions and
lian, as suggested by the central limit theorem. In the ab-electrons. Three-dimensional perturbations in the electromagnetic
sence of the collision operator, the test particle drift kineticfield model the anomalous transport of electrons and simulate the

turbulent behavior that is presumably triggered by the displacement equation reduces to a first-order partial differential equa-
current. Comparison with experimental data and derivation of scal- tion whose characteristics are the guiding center orbits.
ing laws are presented. Q 1996 Academic Press, Inc. The mathematics of this approach should not be confused

with the statistical mechanics occurring in more conven-
tional plasma theory [4].1. INTRODUCTION

The test particle model is implemented in a natural way
by the Monte Carlo method. The test particles move onThe preferred approach in fusion experiments is to use
drift surfaces and jump back and forth between these sur-a strong magnetic field with toroidal geometry to confine
faces following a random walk that models collisions.the plasma. The two standard configurations for confine-
When a particle reaches the boundary of the plasma itment are tokamaks and stellarators, and we model both
escapes, and therefore the particle distribution functionof them in a common framework so that comparison with
necessarily decays. We are led to impose a correspondingthe experimental data available for tokamaks can be used
Dirichlet boundary condition on the distribution function.in making reactor studies of a stellarator. Our methodology
The inverse of the particle confinement time defines a rateis that of computational physics, which means that differen-
of decay which is equal to the lowest eigenvalue of thetial equations are solved numerically, providing results to
time-independent part of the linear operator defining thevalidate theory through comparisons with experimental
drift kinetic equation. A Rayleigh quotient of the corre-data.
sponding eigenfunction is analogous to the standard ex-A basic tool in the study of transport is to track particle
pression for the energy confinement time measured in ex-orbits, for the mean free path is large compared to the
periments.dimensions of the device. Since the confining magnetic

In this theory we assert that the electric potential shouldfield is strong, these orbits are approximately described by
be determined by the requirement of charge neutralitythe differential equations of the guiding center. They are
rather than from equations of motion represented byobtained from the equations of motion by an asymptotic
Ohm’s law because of the singular perturbation of Pois-expansion in the dimensionless gyroradius, with the rapid
son’s equation associated with small Debye length [5]. Thegyration around the magnetic lines averaged out. A rigor-
resulting perturbations of the electric field from radial sym-ous mathematical proof can be found in [1].
metry serve in our model to explain the anomalous trans-We use a test particle model from kinetic theory to
port of electrons. Numerical simulations for tokamaks withevaluate confinement time [2, 3]. This consists in a mathe-
only a radial electric field give a confinement time for thematical idealization of the process of inserting a particle

in the plasma and seeing how long it takes to leave. Since electrons much higher than the confinement time for the
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ions. This requires different rates of decay and hence differ- consistent with conservation of charge. This relativistic
equation is of crucial importance for rapidly fluctuatingent sources for ions and electrons to maintain a steady

state. The impossibility of producing these different fields. We write it in the form
sources in practice seems to explain the origin of turbulence
in tokamaks, triggered presumably by the displacement l2Et 5 = 3 B 2 J,
current in an attempt to enforce quasineutrality.

We perform our simulations with the Monte Carlo code where l is the Debye length and E is the electric field. In
TRAN [5, 6]. Exponential rates of decay of expected values a plasma, the electric and magnetic fields E and B act
of carefully selected integrals of the solution of the drift on both electrons and ions to produce dynamical effects
kinetic equation provide estimates of the confinement time including mass motion, which in turn produces modifica-
for both ions and electrons. This code is one of the few tions in the electromagnetic fields. Consequently we are
tools available to study the electron case efficiently. The dealing with a coupled system of matter and fields. In
importance of such a capability lies in the good agreement this context the equation for the displacement current is
with experimental data that can be achieved by running a relation between the electromagnetic fields and the cur-
both the ion and the electron cases, together with a mecha- rent density
nism to enforce charge neutrality and evaluate the elec-
tric field. J 5 qniui 2 qneue

We use the equations of magnetohydrodynamics to de-
termine the structure of the magnetic field in the plasma. expressed in terms of the number densities ni and ne and
In a time-averaged model with the plasma velocity set velocities ui and ue of the ions and the electrons.
equal to zero, the magnetostatic equations are Since the Debye length is small, it is usual in plasma

physics to neglect the displacement current. The three com-
J 3 B 5 =p, = ? B 5 0. ponents of the magnetic field then must solve the four

scalar equations
Here B is the magnetic field, p is the scalar pressure, and
the current density J is related to B by Ampere’s law

= 3 B 5 J, = ? B 5 0.J 5 = 3 B. The magnetic field lines, which are the integral
curves of the vector field B, are assumed to form a nested

A solution cannot exist unless the compatibility require-family of toroidal flux surfaces, labeled by s. Because of
ment of quasineutralitythe KAM theory, only weak solutions of the equations are

expected to exist [6, 7]. The theory of Clebsch potentials
= ? J 5 0yields the representation

is imposed. Hence in any argument involving B the plasmaB 5 =s 3 =u 5 =f 1 z=s,
is constrained to satisfy this condition.

We neglect the displacement current because the factorwhich enables us to express the guiding center differential
l2 is small, not because Et is zero. When the displacementequations in terms of invariant flux coordinates s, u, and
current is retained in Maxwell’s equations, coupled to qua-f. A suitable linear transformation maps the Clebsch po-
sineutrality, it can be expected to introduce fluctuations oftentials onto poloidal and toroidal angles on each flux
the electric potential F along the magnetic lines in threesurface, from now on denoted by u and f in the text. All
dimensions. These fluctuations are associated with plasmawe need to integrate the equations is a knowledge of the
oscillations and turbulence that lead to significant trans-Fourier representation
port. This more complicated time-dependent behavior
must somehow be taken into account in any model based1

B2 5 O bmn(s) cos(mu 2 nf),
on static fields. We also need a new rule to determine the
electric field when it is suppressed in Maxwell’s equations.
Thus it is natural to consider quasineutrality as a staticwhere a stellarator symmetry is assumed that eliminates

the sine contributions [2]. equation for the electric potential because of the way it is
obtained by dropping higher derivatives in Poisson’s

2. CHARGE NEUTRALITY equation

2.1 Displacement Current and Quasineutrality l2 DF 5 ne 2 ni

The addition of the displacement current to Ampere’s
law makes the equations for the electric and magnetic fields for the electric potential F, which is measured in units
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of the temperature. The theory of singular perturbations in the invariant poloidal and toroidal angles u and f with
coefficients Pmn , measured in units of temperature, thatsuggests that when the left side is neglected, the resulting

requirement of quasineutrality depend on the flux s. Other trigonometric functions are
neglected because stellarator symmetry is assumed.

The charge separation is expanded in a similar Fou-ne(F) 2 ni(F) 5 0
rier series,

must be what determines the electric field, even though F
ne 2 ni 5 O Cmn cos(mu 2 nf),no longer appears explicitly.

It is more customary in the fusion community to find
after dividing out the total number of electrons or ions.the electric field from Ohm’s law
Calculation of the Fourier coefficients Cmn is accomplished
by using the Monte Carlo method to estimate the expectedE 1 u 3 B 5 hJ.
values of trigonometric functions. Convergence has been
tested to establish that the results are statistically sig-Its derivation from kinetic theory involves subtractions,
nificant.making it questionable to neglect small terms. But this law

The aim is to determine the coefficients Pmn so thatis used to establish the radial character of the electric field.
Cmn 5 0. Charge separation gives rise to strong electrostaticIf the resistivity vanishes, the partial differential equation
restoring forces, and thus it is reasonable to expect wellsB ? =F 5 0 leads to the conclusion that F is a function of
and hills in the electric potential to correct for similarthe toroidal flux s alone. This conclusion is based on an
oscillations in the charge separation ne 2 ni . This suggestsill-posed problem in which the right-hand side may not
that the relationship between the two matrices Pmn andeven vanish, and it appears to be responsible for anomalies
Cmn might be diagonally dominant, and in practice we getin the conventional theory of electron transport.
a numerical solution by truncating both of the series forThe electric field is indeed dominated by a radial term,
F and ne 2 ni in the same way.but small three-dimensional oscillations of the electrostatic

A successful iteration driving the Cmn towards zero canpotential seem to have the same effect as observed fluctua-
be based on the hypothesis that the Jacobian matrix relat-tions in density and potential to which anomalous transport
ing Cmn to Pmn is well approximated by the identity [5], sois usually attributed. A sensible mechanism to enforce the
with a suitable relaxation factor « we can putquasineutrality requirement ne 5 ni naturally introduces

such oscillations and provides a time-averaged simulation
Pl11

mn 5 Pl
mn 1 «Cl

mn . (1)of the more complex physical behavior.
Based on these considerations, we reject Ohm’s law in

Numerical calculations with the algorithm (1) show thatfavor of quasineutrality as the rule to obtain the electric
resonant coefficients Pmn with rotational transform i 5field. Quasineutrality is assumed in the derivation of Ohm’s
n/m inside the plasma can be found so that Cmn 5 0 evenlaw, so using that law to determine the fine structure of
when they are less than 2% of the temperature. Thesethe electric field is a dubious procedure.
relatively small terms in F that depend on the poloidal and
toroidal angles u and f explain the anomalous transport of2.2. A Mechanism to Achieve Quasineutrality
electrons in this model of transport because they reduce

We believe that the oscillations in the particle densities te much more than ti .
and in the fields introduced by the term Et are responsible The algorithm described up to this point provides a one
for bringing the confinement time of electrons down to parameter family of solutions because P00 is not yet deter-
the confinement time of ions. We simulate this behavior mined, since the average value of C00 is normalized to be
in our model with static fields by solving the quasineutrality zero. One of the advantages of the TRAN code is its
and ambipolarity equations capability to compute both the ion and the electron con-

finement times, so we can solve the ambipolarity equation
ne 5 ni , te 5 ti . te 5 ti simultaneously with the quasineutrality equation

to obtain a physically relevant solution P00 . Numerical
The mechanism implemented in the TRAN code solves simulations with stellarators have shown that an increase
the quasineutrality equation by requiring that the Fourier of P00 increases the ion confinement time while leaving
coefficients of the densities ni and ne of ions and electrons the electron confinement time practically unchanged.
coincide. The electric potential F is expanded as a Fou- The iteration
rier series,

Pl11
00 5 S1 2 « log

ti

te
D Pl

00F 5 O Pmn cos(mu 2 nf),
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yields good results when coupled with (1) to solve for
quasineutrality and ambipolarity in stellarators.

For tokamaks the dependence of the ion confinement
time on P00 is less pronounced when the device is nearly
axisymmetric, so we simply fix it at a plausible value. On
the other hand, it has been observed from simulations with
three-dimensional bifurcated tokamak equilibria that an
increase in the helical excursion D11 of the magnetic axis
can reduce the electron confinement time without signifi-
cantly affecting the ion confinement time. A similar result
can be achieved by increasing the magnitudes of other
three-dimensional modes of perturbation. Hence to study
tokamak transport, the axisymmetric coefficients bm0 in
the expansion of 1/B2 are obtained from an equilibrium
calculation, but small three-dimensional terms bmn with
n ? 0 are allowed to appear, too. It seems appropriate to
input these coefficients with values having the same order
of magnitude, so we produce a family of solutions parame-
trized by the size of the three-dimensional perturbation. FIG. 1. Insensitivity of transport to the choice of a particular three-
This is to be determined by solving the ambipolarity equa- dimensional mode of perturbation in the spectrum of the magnetic field.

Each point represents a different choice of the perturbation. Typicallytion te 5 ti . Increasing the magnitude of the perturbation
the size of the perturbation is a small percentage of the average magneticreduces te without changing ti significantly, but decreasing
field strength, and the confinement time does not vary significantly withit has the opposite effect. Thus we are led to couple the iter-
the details of the mode.

ation

3. DRIFT KINETIC EQUATION

b l11
mn 5 S1 2 « log

ti

te
D b l

mn 3.1. Test Particle Model and Collision Operator

At the experimental conditions for plasma confinement,
the mean free paths of ions and electrons are many times
larger than the dimensions of the experimental apparatus.with (1) in order to solve the quasineutrality and ambipo-
The particle motion is given approximately by rapid gyra-larity equations for tokamaks. The iteration converges
tion around a guiding center which drifts slowly acrosswell in practice and gives results in agreement with exper-
the magnetic field lines. The gyroradius rL 5 mv'/qB isiment.
assumed small, compared with the plasma radius. The rapidOur algorithm introduces perturbations in the electric
particle gyration is averaged out, leaving equations for thepotential through the iterations on Pmn and modulates the
guiding center of the formperturbations of the magnetic field. These asymmetries

avoid the anomalous behavior of two-dimensional models
x
.

5 ri[B 1 = 3 riB].of transport and provide a three-dimensional simulation
of the turbulence associated with microinstabilities and

Here ri 5 mvi/qB is the parallel gyroradius, which is of thedrift waves. We demonstrate that the algorithm does simu-
same order of magnitude as the gyroradius. It is determinedlate turbulence by showing that the confinement time is
from the conservation of energyrelatively insensitive to the choice of a three-dimensional

mode of perturbation bmn . To do so we choose a set of
modes to work with and initialize them with values having W 5

q2 B2 r2
i

2m
1 eB 1 qF,

the same magnitude, but in each experiment we change
the signs of the terms. We compute the confinement times
for all combinations of signs. Calculations of this kind have where F is the electric potential, and the magnetic moment

e 5 mv2
'/2B is an adiabatic invariant that is held constantbeen run for the ITER tokamak [8]. Usually the magnitude

of the perturbations converges to approximately 1% of the along trajectories. An advantage of these equations is that
they can be transformed into a simple system of ordinaryaverage magnetic field strength B and the confinement

time does not vary significantly with the details of the node differential equations in terms of the flux coordinates s, u,
f involving only knowledge of 1/B2 [2].(see Fig. 1).
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Motivated by the problem of tracking particles in plasma ­f
­t

1 ri[B 1 = 3 riB] ? = fphysics, we adopt the test particle model of kinetic theory
[3] to estimate confinement times. The model consists in
a mathematical idealization of the process of inserting a 5 = ? FnSm(v 2 u)

T
1 = fDG

particle in the plasma and seeing how long it takes to leave.
The particle interacts with a fixed background in which
the electromagnetic and flow fields are specified. 5

n
2

D f 1
1
c2

­

­c Fc2 nScf 1
T
m

­f
­cDGWe introduce a test particle distribution function f to

study the statistics due to collisions. Test particles collide
exhibiting a friction term, where c 5 uv 2 uu and D is theonly with the background plasma particles and therefore
Laplacian on the unit sphere in velocity space. For thethe collision operator becomes linearized. As in a Fokker–
collision frequency we use formulas appearing in the litera-Planck model, the collision operator is described by a sec-
ture that distinguish between pitch angle scattering andond-order elliptic partial differential operator in conserva-
energy scattering [2, 3].tion form that acts on velocity coordinates. The central

limit theorem suggests that solutions of the associated dif- 3.2. Exponential Decay and Confinement Time
fusion equation in velocity space should decay to the nor-

We describe next how it is possible for us to computemal distribution or Maxwellian, shifted by the flow veloc-
not only the ion confinement time, but also the electronity u.
confinement time. The problem of computing the electronWe write the drift kinetic equation for the distribution
confinement time requires an efficient technique becausefunction f of the test particles in the form
of the very slow drift of the electrons across magnetic
surfaces. The importance of computing both confinement
times is that they allow us to extract a physically relevant­f

­t
1 ri[B 1 = 3 riB] ? = f (2)

answer from a parametrized family of solutions of the
5 = ? [n e2m(v2u)2/2T =em(v2u)2/2T f ]. transport problem by taking into account quasineutrality.

Exponential decay of f is suggested naturally by the
method of separation of variables because t does not ap-The operator = acts on spatial coordinates on the left, but
pear explicitly in the drift kinetic equation. We look foron velocity coordinates on the right. The collision fre-
solutions of the formquency n and the temperature T are known functions of

uv 2 uu and the flux s, respectively. The term in square
f 5 e2lt F,brackets on the left is the guiding center velocity, and the

term on the right is the collision operator. There are actu- where F does not depend on time. Substitution of this
ally two separate equations to solve, one for the ions and identity into the drift kinetic equation leads to the eigen-
one for the electrons, distinguished by the respective guid- value problem
ing center equations, collision frequencies, and tempera-
tures. The normal distribution shifted by u accounts for

ri[B 1 = 3 riB] ? =F 5 = ? FnSm(v 2 u)
T

1 = fDG1 lF.conservation of momentum in the test particle model.
We shall refer to (2) as the drift kinetic equation. Ab-

sence of explicit dependence on the time t suggests expo- If the smallest eigenvalue is positive, then solutions of the
nential decay to the normal distribution in velocity space, drift kinetic equation decay exponentially, and the rate
and the dependence of the collision operator on the colli- of decay is dominated by this eigenvalue. The particle
sion frequency and temperature are exhibited. But there confinement time
are other factors that must be taken into account. The
sign of ri is not determined by the energy equation and t 5 1/l
therefore besides s, u, f, W, and e the distribution function

is defined as the inverse of the smallest eigenvalue l anddepends also on the sign of ri . The problem with the
is a measure of how long it takes for the test particles tosign of the parallel gyroradius is dealt with by adding an
leave the plasma.ordinary differential equation for ri . The most relevant

If we identify the term lF on the righ-hand side of thefeatures of the collision operator are its dependence on
eigenvalue equation as a source S, then for the lowestthe temperature and collision frequency, and small modi-
eigenvalue we havefications preserving these properties do not seem to af-

fect transport.
If we differentiate products on the right-hand side in the S 5

1
t

F.
drift kinetic equation, it assumes the more standard form
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The source is related to the rate at which particles must 4. MONTE CARLO METHOD
be injected into the plasma to maintain a steady state. For

4.1. A Random Walk for the Collision Operatora reasonable definition of the norm, the Rayleigh quotient

The evaluation of confinement time and the Fourier
coefficients of the charge separation involves multiple inte-

t 5
iF i
iSi grals in a five-dimensional space described by the variables

s, u, f, W, and e. To do these integrations we must solve
the drift kinetic equation for the particle distribution func-

gives a suggestive representation for the confinement time. tion f, which depends on the five variables above, the time
Note that there are two distinct sources, one for the ions t, and the sign 6 of the parallel velocity. The Monte Carlo

and one for the electrons, so that when the confinement method is an appropriate tool for these computations in
times are different the sources must be, too. This situation a space of high dimension.
causes trouble in two-dimensional models of transport An algorithm to solve the drift kinetic equation has been
where the electron confinement time is an order of magni- implemented in the TRAN code. It is a split time method
tude larger than the ion confinement time. The necessity consisting alternately of numerical integrations of guiding
of producing two different sources makes it impossible to center orbits in flux coordinates and applications of a ran-
maintain a steady state in tokamaks and induces oscilla- dom walk in velocity space that models the collision op-
tions of the electric field that are associated with turbu- erator.
lence. We now apply the ideas of the last section to derive a

The TRAN code computes the particle confinement time random walk modeling the collision operator that is imple-
t rather than the energy confinement time tE . For compari- mented in the TRAN code. This operator is expressed
son with experiments and in reactor studies we need a in a spherical coordinate system whose origin has been
relationship between these confinement times. The semi- translated by u. Moreover, the collision frequency is itself
empirical formula a function of c 5 uv 2 uu, so it is convenient to translate

the coordinate system by u before we apply the random
walk. The formulas for the change of coordinates show

tE 5 t/3B
that when u is small compared with the ion thermal speed
the changes made in the energy W and in the magnetic
moment e by the random walk are small, indicating thathas worked well in practice, where the division by B comes
conservation of momentum should not play a major rolefrom normalization of time by the ion gyrofrequency.
in transport.In the TRAN code the particle confinement time is eval-

In the guiding center approximation the energy W anduated by estimating the exponential rate of decay of func-
the cosine h of the pitch angle suffice to specify the velocity.tionals using the Monte Carlo method [6]. Numerical ex-
After W and h are changed by a random walk the magneticperiments have shown that good estimates for both the
moment e is updated accordingly. The presence of theion and electron confinement times are obtained from
flow velocity u in the collision operator makes it necessarythe functional
to use a third coordinate for the particle velocity in order
to apply the random walk. At low collisionality, the case
we are most interested in, it is reasonable to sample theOO cosS sjk 2 sk

1 2 sksjk

f
2D5 Ae2t/t 1 ? ? ?,

angle a defined by

v' ? u' 5 v' u' cos a
where sjk stands for the coordinate s of the jth particle
launched from the flux surface s 5 sk . We remark that at from a uniform distribution just before collisions. Here v'

low collisionality one can obtain the exponential rate of and u' are the components of v and u perpendicular to B.
decay of the expected value N(t) of the number of particles The collision operator is to be written in a coordinate
remaining in the plasma by approximating the distribution system translated by u and therefore we transform the
of arrival times by a Poisson process. But this argument variables W, h, and a to new variables W̃, h̃, and ã using
is not valid at higher collisionality and, moreover, the use the formulas
of N(t) to estimate the electron confinement time would
require an excessive amount of computation. The success W̃ 5 W 1 u2

i 1 u2
' 2 2ÏW (uih 1 u' Ï1 2 h2 cos a)

of our method of calculation of particle confinement times
is due to the exponential decay of the principal eigenfunc- h̃ 5

ÏW h 2 ui

ÏW̃tion, which also occurs in more general situations.
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tan ã 5
ÏW(1 2 h2) sin a

ÏW(1 2 h2) cos a 2 u'

.

If we write the formal adjoint of the collision operator in
these coordinates, then a split time argument leads to the
random walk

ãn11 5 ãn 6 ! n Dt

(1 2 h̃2
n)

h̃n11 5 (1 2 n Dt)h̃n 6 Ïn Dt(1 2 h̃2
n)

W̃n11 5 W̃n 1 2n Dt FS3
2

1
W̃nn9

n D T 2 W̃nG6 2 ÏTW̃nn Dt .

This can be derived from one-dimensional diffusion by the
following argument. Consider a linear second-order elliptic
operator L whose formal adjoint is L* 5 a(x)­2

x 1 b(x)­x .
FIG. 2. Dependence of confinement time on the detailed structureFor a probability density function f (t, x) satisfying of the collision operator. The horizontal coordinate measures deviation

ft 5 L[ f ], the random walk xn11 5 xn 1 b(xn) Dt 6 of the distribution function from a Maxwellian. The resulting changes in
the confinement time are not large enough to compensate for failureÏ2a(xn) Dt models the associated diffusion.
of quasineutrality.New values for W and h are obtained by translating the

coordinate system back again. The algorithm implemented
in TRAN to solve the drift kinetic equation consists in
alternating between numerical integrations of the guiding Legendere polynomials Pn(h). For reasons of symmetry we
center equations in flux coordinates and changes in W and restrict ourselves to even polynomials and make the choice
h defined by the random walk.

A(h) 5 P0(h) 1 b P2(h),4.2. Detailed Structure of the Collision Operator

The principal parameters in the collision operator are where P0 and P2 are the Legendre polynomials of degrees
the temperature and the collision frequency. Runs of zero and two, respectively, divided by their norms. The
TRAN provide numerical evidence that other details of coefficient b specifies a dimensionless bias of the Max-
the collision operator matter little for transport. In order to wellian.
study this property systematically we modify the collision A similar modification of the random walk can be made
operator by introducing anisotropy in the Maxwellian and in order to introduce anisotropy. In the coordinates W, h,
then observe the effect on transport. Our numerical results with the flow u set to zero, we obtain a random walk for
show that there is little change in the confinement time, W equal to the random walk for W̃ of the last section, and
corroborating our claim that details of the collision opera- for h the random walk
tor other than its dependence on the temperature and the
collision frequency have a negligible effect on transport.

hn11 5 (1 2 n Dt)hn 6 Ïn Dt(1 2 h2
n) 1

1
2

A9

A
n Dt(1 2 h2

n)The modified collision operator is given by

prevails, where A9 and A are evaluated at hn , and n at Wn .L[ f ] 5 = ? Fn Ae2m(v2u)2/2T = Sem(v2u)2/2T

A
fDG,

Each sign in front of the square root has probability As.
We have run the TRAN code to assess the theory just

described for the example of the ITER tokamak. The re-where A depends on the angle between v and B. It has the
property that the associated diffusion equation in velocity sults show that there is only secondary variation of the

confinement times of the ions and electrons with changesspace admits as a solution the normal distribution
multiplied by the anisotropy factor A. This choice for L[ f ] of the bias in the collision operator (see Fig. 2). Such an

effect could not compensate for the failure of quasineutral-is motivated by the possibility of the magnetic field B
introducing anisotropies in the distribution function. A ity in practice. The calculations also suggest that the pertur-

bation from constant magnetic moment e associated withnatural representation for A is given by a superposition of
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any deviation of exact orbits from the guiding center ap- where the Pn’s are spherical harmonics. When we compute
the expected value Ic of c, all terms in the expansion dropproximation can be neglected.
out except for those multiplying the spherical harmonics
obtained from homogeneous polynomials of degree one.4.3. Decay to a Flow and Conservation of Momentum
We use the subscript 1 for such a term and further separate

For two-dimensionally symmetric devices, there exists
the time variable in the form

an argument showing that conservation of momentum im-
plies ambipolarity [4]. This result can be interpreted as a

f1 5 e2kt F(ucu)consistency of quasineutrality with the equations of motion
because the proof uses the magnetic field, which constrains

to arrive at the eigenvalue problemthe plasma to satisfy = ? J 5 0. Elsewhere we have shown
that a two-dimensionally symmetric quasineutral solution
for transport that decays exponentially cannot exist [9].

2kF 5
2l1n

c2 F 1
1
c2

­

­c Sc2 ne2mc2/2T ­

­c
emc2/2T FD,We are thus led to investigate the effect of momentum

conservation on the confinement time.
Note that for test particles the integral in velocity space

where c 5 ucu and 2l1 is the eigenvalue of the Laplacianof the collision operator times v, which measures the rate
on the unit sphere having the first degree spherical harmon-of change of momentum, is not necessarily zero, because
ics as eigenfunctions. What we need to show is that kthis would imply
is positive.

We restrict ourselves to rapidly decaying functions of
the speed because we are interested in behavior like theu 5 E v f dv@E f dv
Maxwellian. Let us multiply through by c2emc2/2T F and
integrate with respect to c. After an integration by parts

when we make the simplifying assumption that n is inde- we obtain the identity
pendent of velocity. But f is the distribution function of
the test particles and not of the background particles. Even

k Ey

0
c2emc2/2T F 2 dc 5 l1 Ey

0
nemc2/2T F 2 dcif we wanted to implement such a flow u, it would require

a large number of particles to compute a statistically sig-
nificant answer, making the calculation prohibitive. That 1 Ey

0
c2ne2mc2/2T S ­

­c
emc2/2T FD2

dc
we would obtain little new information is shown below by
our results with an arbitrary flow.

In the test particle model the electromagnetic field and from which we conclude that k . 0, since l1 is positive.
the flow velocity u(x) are assigned. The test particles scatter The same argument shows that all moments of order
against a fixed background and therefore conservation of greater than or equal to one converge to zero as t R y.
momentum is to be understood as a decay to the flow. In This proof fails for the moment of order zero because
other words, the first moment the spherical harmonic of order zero, which is constant,

corresponds to the eigenvalue zero of the Laplacian on
the unit sphere. In this case the eigenvalue problem admits

Ic 5 E cf dc
k 5 0 as a solution with the Maxwellian as the correspond-
ing eigenfunction.

Next let us present numerical results demonstrating thatof the random velocity c 5 v 2 u must converge to zero
conservation of momentum is not an essential issue foras t goes to infinity. We give here a formal proof showing
transport, so that we may set u 5 0 in the collision operator.that our collision operator conserves momentum in this
Consider a flow parallel to B. Monte Carlo calculationssense.
show that it produces no significant change in the confine-Consider the associated diffusion equation
ment time. Although this flow is a typical one to consider
in the guiding center approximation [10], its merit is lim-­f

­t
5 = ? [n e2m(v2u)2/2T =em(v2u)2/2T f ] ited. A comparison between the magnetostatic equations

and Ohm’s law suggests that a rotation of the plasma in
the direction of J is to be expected because of the radial

in velocity space. Since the collision frequency is a function electric field. In choosing u parallel to B one could argue
of ucu only, we can separate variables in the form that we do not have a radial electric field. A simulation

with u parallel to J would be more realistic. We therefore
f 5 O fn(t, ucu)Pn(c/ucu), performed experiments with an arbitrary flow u' perpen-
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various modes, and the consistent agreement of the results
at each gyroradius shows that the method does not depend
strongly on the number of harmonics (see Fig. 4).

We have already discussed why quasineutrality takes
precedence over Ohm’s law in determining the electric
field. An algorithm to solve the quasineutrality and ambi-
polarity equations was presented in which oscillations of
the electromagnetic field and charge separation are mod-
eled by asymmetric Fourier modes. Our contention is that
three-dimensional perturbations are crucial for the exis-
tence of the quasineutral decaying solutions required for
transport. The confinement times computed by this algo-
rithm compare favorably with tokamak experimental data
obtained from TFTR supershots and from the PLT, and
also good agreement has been found with predictions for
the ITER tokamak [5, 11].

We have compared numerical results from the TRAN
code with one of the JET experiments reported in [12].
Satisfactory agreement with the experimental results once

FIG. 3. Dependence of the energy confinement time on flow across more shows that our model can explain the anomalous
the magnetic field. There is little change in the confinement time for

transport of electrons. We have also used extensive numer-values of the speed that are as much as 10% of the ion thermal speed,
ical calculations to derive semi-empirical scaling laws forwhich suggests that conservation of momentum is a secondary issue.
the ITER tokamak, for the LHD stellarator now being
constructed in Japan [6], and for the MHH advanced stel-
larator reactor [13].dicular to B. We have raised u' to 10% of the ion thermal

Experimental parameters modeling JET are plasma ma-speed, a value bigger than is observed experimentally. Our
jor radius R 5 3 m, horizontal plasma minor radiuscalculations establish again that there is no significant
a 5 1 m, and vertical plasma minor radius b 5 1.5 m.change in the confinement time (see Fig. 3).
The particle density and temperature are n 5 4 3 1013

5. NUMERICAL EXAMPLES

We have shown in Section 2.2 that transport does not
depend strongly on the choice of a three-dimensional mode
of perturbation of the magnetic field. Now we consider
the convergence of the spectral method that solves the
quasineutrality equations. We shall study how the con-
finement time behaves when we increase the number of
harmonics Pmn of the electric potential and how the size
of the perturbations of the spectrum of the magnetic field
changes when we increase the number of harmonics bmn .

In the TRAN code the guiding center ordinary differen-
tial equations are solved by a fourth-order Runge–Kutta
method in which the step size is chosen so that well-defined
drift surfaces can be observed in Poincaré sections. The
approximation for the collision operator requires that n Dt
be small compared to one, where Dt is the collision time
step. Extensive runs have been made to assure that the
Fourier coefficients Cmn of the charge separation and the
confinement times te and ti are statistically significant.

For a convergence study we estimate the confinement
FIG. 4. Convergence study for the ITER tokamak. The collisiontime and the size of the magnetic field perturbations when

frequency corresponds to the conditions B 5 5 tesla, T 5 15 keV, n 5
we increase the number of Fourier modes bmn and Pmn 2 3 1014 cm23, a 5 2, and Zeff 5 1. The scaling law tE Y r22

L that is
in the expansions of 1/B2 and F. We have plotted the inferred turns out to depend only weakly on the number of Fourier modes

Pmn of the electric potential that are used.confinement time versus the dimensionless gyroradius for
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cm23 and T 5 4 keV, respectively, where we use average
and not peak values. The average magnetic field strength
is B 5 3 tesla, the effective charge number is Z 5 2, and
the energy confinement time is tE 5 260 ms. These data
give the values rL 5 0.0025 and n 5 2.5 for the dimen-
sionless gyroradius and the dimensionless normalized colli-
sion frequency needed in the TRAN code. We include
both axisymmetric Fourier modes and three-dimensional
modes with m # 4 and n # 4 that are resonant inside the
plasma for our calculations. The radial electric potential
is set to 21.5 times the temperature.

Two separate computations enabled us to study the itera-
tive process. In a first run the three-dimensional modes of
the electromagnetic field were put to zero and therefore
the electron confinement time became much larger than
the ion confinement time. A later run showed how three-
dimensional perturbations of the fields affect transport by
reducing the electron confinement time much more than FIG. 5. Cycles of a Monte Carlo iteration toward quasineutrality for
the ion confinement time. The iteration continued until JET at the experimental conditions B 5 3 tesla, T 5 4 keV, ni 5 ne 5

4 3 1013 cm23, a 5 2, Zeff 5 2, a 5 100 cm, b 5 150 cm, and R 5 300quasineutrality was achieved, and the resulting confine-
cm. Two-dimensional calculations of the electron and ion confinementment times of the ions and electrons reached good
times are an order of magnitude apart. When a three-dimensional pertur-agreement with the experimental value.
bation brings them together then both agree with experimental data.

These simulations demonstrate that a two-dimensional
model cannot explain experimental observations. The
Monte Carlo method takes into account the complex geom-
etry of the drift surfaces, so it models neoclassical transport value of 0.002 for rL . The LHD calculations predict an
that is dominated by toroidal curvature and banana orbits. energy confinement time of 20 ms at reactor conditions,
If in the calculations the three-dimensional perturbations which is poor compared with the values 1 s for the ITER
of F and 1/B2 are set equal to zero and no iteration in the tokamak and 1.5 s for the MHH stellarator (see Fig. 6).
electric potential is allowed, then the confinement times
never come into line with measurements. However, when
quasineutrality is imposed to determine the three-dimen-
sional terms then the numerical answers agree well with
observations (see Fig. 5).

Let us next discuss scaling laws. From a parameter study
for the ITER tokamak we arrive at the rule

tE Y r22
L .

The exponent we have found for scaling with rL is slightly
lower than would be obtained by semi-empirical rules,
which suggest that the confinement time scales more like
the volume. The dependence of the confinement time on
rL deduced from runs of both the LHD and the MHH
stellarators leads to a scaling law of the form

tE Y r22.5
L .

The results will enable us to compare the performance of
FIG. 6. Scaling law for the MHH and LHD stellarators. These runs

these configurations at reactor conditions. All cases are run are compatible with the average reactor specifications B 5 5 tesla, T 5
with typical values 2 3 1014 cm23 for the particle number 10 keV, n 5 2 3 1014 cm23, a 5 2, and Zeff 5 1. The rule tE Y r22.5

L

applies to both devices, but the constants of proportionality are different.density, 10 keV for the average temperature, and 5 tesla for
Each point required 30 min machine time on the CRAY Y-MP C90 com-the average magnetic field strength, giving an approximate
puter.
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random walk among drift surfaces. The mean free path is
very much larger than the plasma radius, so the compli-
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